Failure precursor detection in complex electrical systems using symbolic dynamics
نویسندگان
چکیده
Failures in a plant’s electrical components are a major source of performance degradation and plant unavailability. In order to detect and monitor failure precursors and anomalies early in electrical systems, we have developed a signal processing method that can detect and map patterns to an anomaly measure. Application of this technique for failure precursor detection in electronic circuits resulted in robust detection. This technique was observed to be superior to conventional pattern recognition techniques such as neural networks and principal component analysis for anomaly detection. Moreover, this technique based on symbolic dynamics offers superior robustness due to averaging associated with experimental probability calculations. It also provided a monotonically increasing smooth anomaly plot which was experimentally repeatable to a remarkable accuracy.
منابع مشابه
Fault Detection and Isolation of Multi-Agent Systems via Complex Laplacian
This paper studies the problem of fault detection and isolation (FDI) for multi-agent systems (MAS) via complex Laplacian subject to actuator faults. A planar formation of point agents in the plane using simple and linear interaction rules related to complex Laplacian is achieved. The communication network is a directed, and yet connected graph with a fixed topology. The loss of symmetry in the...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملNeuro-ACT Cognitive Architecture Applications in Modeling Driver’s Steering Behavior in Turns
Cognitive Architectures (CAs) are the core of artificial cognitive systems. A CA is supposed to specify the human brain at a level of abstraction suitable for explaining how it achieves the functions of the mind. Over the years a number of distinct CAs have been proposed by different authors and their limitations and potentials were investigated. These CAs are usually classified as symbolic and...
متن کاملSymbolic dynamic analysis of complex systems for anomaly detection
This paper presents a novel concept of anomaly detection in complex dynamical systems using tools of Symbolic Dynamics, Finite State Automata, and Pattern Recognition, where time-series data of the observed variables on the fast time-scale are analyzed at slow time-scale epochs for early detection of (possible) anomalies. The concept of anomaly detection in dynamical systems is elucidated based...
متن کامل